TABLE OF CONTENTS

1.0 **INTRODUCTION** ..1

2.0 **PROJECT UNDERSTANDING** ..1
 2.1 Scope of Services ...1
 2.2 Site Description ..2
 2.3 Project Description ...2

3.0 **GEOLOGY** ...2
 3.1 Regional Geology ...2

4.0 **FIELD EXPLORATIONS AND LABORATORY TESTING** ..4
 4.1 Field Explorations ..4
 4.2 Laboratory Test Results ...5
 4.3 Previous Explorations ..5

5.0 **SUBSURFACE CONDITIONS** ...5

6.0 **SITE-SPECIFIC SEISMIC HAZARD EVALUATION** ..7
 6.1 Seismic Acceleration and Soil Profile ..7
 6.2 Site Seismic Hazards ..8
 6.2.1 Liquefaction Potential Analysis ...8
 6.2.2 Lateral Spreading and Post-Liquefaction Slope Stability9

7.0 **DESIGN CONCLUSIONS AND RECOMMENDATIONS** ...9
 7.1 Bridge Foundation Alternatives ...9
 7.1.1 Driven Pin Piles ...10
 7.1.2 Drilled-In Pin Piles ..10
 7.2 Bridge Abutment Wall Design Recommendations ..13
 7.3 Slope Stability Analyses...14

8.0 **GEOTECHNICAL CONSTRUCTION CONSIDERATIONS** ...15
 8.1 General ...15
 8.2 Site Preparation/Earthwork ..15
 8.2.1 Site Preparation and Excavation ..15
 8.2.2 Cut-and-Fill Slopes ..15

9.0 **LIMITATIONS** ..16

10.0 **REFERENCES** ...18
TABLES

1 Quaternary Faults Within a 15-Mile Radius of Project Site
2 Recommended Seismic Design Criteria
3 LPile Plus 5.0 Geotechnical Input Parameters, East Abutment
4 LPile Plus 5.0 Geotechnical Input Parameters, West Abutment
5 Post-Seismic LPile Plus 5.0 Geotechnical Input Parameters, East Abutment
6 Post-Seismic LPile Plus 5.0 Geotechnical Input Parameters, West Abutment

FIGURES

1 Vicinity Map
2 Site and Exploration Plan
3 Lateral Earth Pressure Distribution on Walls

APPENDICES

A Field Explorations
B Laboratory Testing
C Previous Field Explorations
D Important Information About Your Geotechnical/Environmental Report
1.0 INTRODUCTION

The City of Lake Oswego and Oregon State Parks and Recreation Department and their consulting team, led by Otak, Inc., are planning to replace the existing Iron Mountain Sanitary Sewer and Pedestrian Bridge in Lake Oswego, Oregon. The bridge crosses Tryon Creek approximately 0.4 miles west of Terwilliger Boulevard. Shannon & Wilson, Inc., performed an evaluation under a subconsultant agreement (project No. 16388A) with Otak, Inc., who in turn is under contract to the City of Lake Oswego as the lead consultant on the project. This report presents the results of our geotechnical design evaluations and recommendations to support the proposed bridge replacement. The approximate project location is shown on Figure 1, Vicinity Map. Shannon & Wilson previously provided a preliminary memorandum dated November 2, 2012, based on the limited subsurface information available from an exploration program consisting of shallow hand auger explorations. This report summarizes our work for this project, including additional geotechnical explorations, engineering conclusions, and recommendations.

2.0 PROJECT UNDERSTANDING

2.1 Scope of Services

We completed the following task items from the scope of services for the proposed bridge replacement:

- Completed a site exploration program, including advancing two borings to depths of 23.5 and 33.5 feet;
- Provided recommendations for earthwork, including site preparation, excavation, cut-and-fill slopes, structural fill material, fill placement, compaction, and wet weather construction; and an evaluation of onsite materials for use as structural fill onsite and in the trail embankment;
- Performed a site-specific seismic hazard evaluation, including the peak horizontal acceleration on rock for 475-year and 975-year return period ground motions, potential liquefaction, liquefaction induced settlement, and seismic slope stability;
- Developed recommendations for bridge foundation design;
- Developed recommendations for fills and approach embankments, including global stability and settlement.
The scope of services was performed in general accordance with the following manuals and specifications:

- ODOT Geotechnical Design Manual (GDM), September 2013;
- ODOT Oregon Standard Specifications for Construction (OSSC), 2008;
- ODOT Soil and Rock Classification Manual, 1987; and
- Applicable FHWA geotechnical design guidelines.

2.2 Site Description

Based on the as-constructed plans and information provided to Shannon & Wilson by Otak, the bridge was constructed in 1973. The bridge is a three-span structure supported on timber piles. Based on the as-constructed plans, the abutments are founded on 4-inch by 4-inch timber posts that are 6.5 feet long, and the interior bents are founded on Class B Timber pilings that are 25 feet long and founded on “solid footing.” Slopes are steep on the western side of the bridge where the creek bank is approximately 5 to 7 feet tall. Slopes are more gradual on the eastern side of the bridge. The bridge supports an existing 10-inch-diameter sanitary sewer line.

2.3 Project Description

The City of Lake Oswego and Oregon State Parks and Recreation Department are planning to construct a new single-span bridge to replace the existing bridge. The new bridge will be an approximately 75-foot-long steel girder bridge. Based on information provided by Otak, the ordinary high water elevation is 102 feet (MSL). The existing bottom of the channel is at an approximate elevation of 98 feet. A detailed scour assessment was beyond the scope of Otak’s services; however, we understand approximately 1 foot of scour is anticipated over the design life of the bridge and that the 100-year flood elevation is 102.7 feet (MSL).

We understand that the preliminary unfactored loads at each abutment are approximately 57 kips (35 kips dead and 22 kips live). The base of the pile cap will be at an approximate elevation of 105 to 106 feet at the west end of the bridge and 102 to 103 feet on the east end of the bridge.

3.0 GEOLOGY

3.1 Regional Geology

The project site and much of Tryon Creek State Park are underlain by the Basalt of Waverly Heights and associated sedimentary rocks, according to mapping by Beeson and others (1989). The Eocene Basalt of Waverly Heights and associated sedimentary rocks are about 43 to 50 million years old and are thought to represent an oceanic island complex that accreted onto the
western edge of the North American crustal plate during subduction of adjacent oceanic crust. The sedimentary portion of the unit is generally not well exposed, but borehole data suggests that it, rather than basalt, underlies much of the Tryon Creek area. Thickness of the overall unit is not known, but it is assumed to extend to considerable depth. The Statewide Landslide Information Database for Oregon, release 2 (SLIDO-2) shows numerous landslides in the Tryon Creek watershed, and many of these are likely associated with sedimentary layers and deeply weathered basalts in the Basalt of Waverly Heights unit.

During the late stages of the last great ice age, between about 18,000 and 15,000 years ago, repeated catastrophic floods, caused by the rupture of glacial ice dams in western Montana, deposited a tremendous load of sediment in the Portland area (Allen and others, 2009). The floods are known as the Missoula Floods, and locally pooled to elevations of about 400 feet. In the vicinity of the project site, micaceous sand and silt associated with the Missoula Floods blanketed portions of the Basalt of Waverly Heights unit. Tryon Creek and its tributaries have since locally deposited varying thicknesses of alluvium derived from the Basalt of Waverly Heights, reworked Missoula Flood deposits, and other local geologic units.

3.2 Regional Geology

Oregon’s position at the western margin of the North American Plate, relative to the Pacific and Juan de Fuca plates, has had a major impact on the geologic development of the state. Earthquakes in the western part of Oregon occur as a result of the collision of these plates and related volcanic activity. These plates meet along a mega thrust fault called the Cascadia Subduction Zone (CSZ). The CSZ runs approximately parallel to the coastline from northernmost California to southern British Columbia. The compression forces that exist between these colliding plates cause the oceanic plate to descend, or subduct, beneath the continental plate at a rate of about 1.5 inches per year. This process leads to contortion and faulting of both crustal plates throughout much of the western regions of Washington, Oregon, northern California, and southern British Columbia. Stress built up between the colliding plates is periodically relieved through great earthquakes at the plate interface (CSZ).

Within the present understanding of the regional tectonic framework and historical seismicity, three broad earthquake sources have been identified. These three types of earthquakes and their maximum plausible earthquakes, as determined by Wells and others (2000), are as follows.

- **Subduction Zone Interface Earthquakes** originate along the CSZ, which is located 25 miles beneath the coastline. Paleoseismic evidence and historic tsunami studies indicate
that the most recent subduction zone thrust fault event occurred in the year 1700, probably ruptured the full length of the CSZ, and may have reached a Magnitude 9.

- **Deep-focus, Intraplate Earthquakes** originate from within the subducting Juan de Fuca oceanic plate as a result of the downward bending and contortion of the plate. These earthquakes typically occur 28 to 38 miles beneath the surface. Such events could be as large as Moment Magnitude 7.5. Examples of this type of earthquake include the 1949 Magnitude 7.1 Olympia earthquake, the 1965 Magnitude 6.5 earthquake between Tacoma and Seattle, and the 2001 Nisqually (slightly north of Olympia) earthquake at Magnitude 6.8. Intraslab events have occurred frequently in Puget Sound but historically are rare in Oregon.

- **Shallow-focus Crustal Earthquake** are typically located within the upper 12 miles of the continental crust and could be generated by contortion of the overriding North American plate beneath the project area. The largest known crustal earthquake in the Pacific Northwest is the 1872 North Cascades quake at Magnitude 7.4. Other examples include the 1993 Magnitude 5.6 Scotts Mill earthquake and Magnitude 6 Klamath Falls earthquake.

The U.S. Geological Survey’s Earthquake Hazards Program, Quaternary Fault and Fold Database (Personius, 2002; McCrory, 2003) lists three Quaternary age faults northeast and northwest of the site, as shown in Table 1. The nearest Quaternary age fault is the Oatfield Fault located 0.4 miles northeast of the site.

<table>
<thead>
<tr>
<th>Fault Name</th>
<th>Distance and Direction from Site</th>
<th>Most Recent Deformation</th>
<th>Slip rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oatfield Fault</td>
<td>0.4 miles northeast</td>
<td><1,600,000 years</td>
<td><0.2 mm/year</td>
</tr>
<tr>
<td>Portland Hills Fault</td>
<td>2.5 miles northeast</td>
<td><1,600,000 years</td>
<td><0.2 mm/year</td>
</tr>
<tr>
<td>Helvetia Fault</td>
<td>14 miles northwest</td>
<td><1,600,000 years</td>
<td><0.2 mm/year</td>
</tr>
</tbody>
</table>

4.0 FIELD EXPLORATIONS AND LABORATORY TESTING

4.1 Field Explorations

Shannon & Wilson explored the subsurface conditions at the site with two geotechnical borings, designated B-1 and B-2. The borings were drilled between March 24 and March 25, 2014, by PLi Systems of Hillsboro, Oregon. A Shannon & Wilson geologist located the borings, collected soil samples, and logged the materials encountered during drilling. Approximate exploration locations are shown on the Site and Exploration Plan, Figure 2. Details of the exploration
program, including boring logs and descriptions of the techniques used to advance and sample the borings, are presented in Appendix A.

4.2 Laboratory Test Results

Laboratory tests were performed on selected samples from the borings to determine basic index and engineering properties of the soils encountered. The laboratory testing program included moisture content analyses, Atterberg limits tests, and particle-size analyses. Laboratory testing was performed by Northwest Testing, Inc. (NTI), of Wilsonville, Oregon. All tests were performed in accordance with applicable ASTM International (ASTM) standard test procedures. Results of the laboratory tests and a brief description of the testing procedures are presented in Appendix B.

4.3 Previous Explorations

Under a previous scope of work, Shannon & Wilson performed a geologic hazard reconnaissance and drilled six hand auger borings at the site. Data and observations from this work were summarized in our Preliminary Geotechnical Evaluation Letter, dated November 2, 2012. For reference, logs of the hand auger borings are included in Appendix C of this report.

5.0 SUBSURFACE CONDITIONS

We grouped the materials encountered in our field explorations into four geotechnical units, as described below. Our interpretation of the subsurface conditions is based on the borings and regional geologic information from published sources. The geotechnical units are as follows:

- **Fill**: very loose / soft *Silt (ML)* with some roots and concrete debris;
- **Fine-Grained Alluvium**: very loose to medium dense / soft to medium stiff *Silt to Sandy Silt (ML)*, nonplastic to low plasticity, contains some wood debris;
- **Sand and Gravel Alluvium**: loose to medium dense *Silty Sand with Gravel (SM)*, contains some wood debris and logs;
- **Weathered Mudstone**: stiff to hard *Elastic Silt (MH)* and *Fat Clay (CH)*, some with sand and trace gravel, high plasticity, blocky.

These generalized geotechnical units have been defined by their geology, engineering properties, and distribution in the subsurface. Contacts between the units may be more gradational than shown in the boring logs in Appendix A, and variations in subsurface conditions may exist between the locations of the borings.
5.1 Fill

Fill was encountered in boring B-1 from the ground surface to a depth of about 1 foot. There, it consisted of very loose / soft, gray-brown Silt (ML) with about 10 percent fine sand and some roots and concrete debris. The soil was moist and nonplastic to low plasticity. Additional Fill should be anticipated near the existing bridge abutments and buried sanitary sewer. Fill in those locations may include gravel and/or other variable material.

5.2 Fine-Grained Alluvium

Fine-Grained Alluvium was encountered in both borings. In boring B-1, a 6-foot-thick layer was encountered both below the Fill, and a 5-foot-thick layer was encountered between the Sand and Gravel Alluvium and Weathered Mudstone. In boring B-2, it was encountered from the ground surface to a depth of about 9 feet. In general, the Fine-Grained Alluvium consists of very loose to medium dense / soft to medium stiff, gray to yellow-brown Silt (ML) with varying amounts of fine sand. The soil is typically moist and nonplastic to low plasticity. However, the lower layer in boring B-1 was wet, nonplastic, and exhibited rapid dilatency. Few 2-inch-thick interbeds of Lean Clay (CL) were observed in the unit in boring B-2, along with a few wood fragments. Standard Penetration Test (SPT) N-values in the unit ranged from 2 to 11 blows per foot (bpf) and averaged 5 bpf. The results of two natural moisture content analyses were 33 and 29 percent. Atterberg limits tests found one specimen to be nonplastic and another to have a plasticity index of 5 percent.

5.3 Sand and Gravel Alluvium

Sand and Gravel Alluvium was encountered in both borings, below or within the Fine-Grained Alluvium. The encountered thickness of the unit in both borings was approximately 3 feet. In general, the Sand and Gravel Alluvium consists of loose to medium dense, gray to dark gray Silty Sand with Gravel (SM). The gravel is generally wet, subrounded, and fine to coarse. The sand is typically fine to coarse, and the fines have low plasticity. In boring B-2, wood was encountered from a depth of about 9 to 12 feet. In sample B-2, S-5, the wood appeared to be continuous, as though it was part of a solid log. Excluding the SPT taken in the wood, two SPT N-values in the unit were 5 and 17 bpf. The results of two natural moisture content analyses were 30 and 40 percent. Sieve analyses of two specimens indicated fines contents of 14 and 22 percent by dry weight.
5.4 Weathered Mudstone

The Weathered Mudstone is interpreted to represent weathered marine sedimentary rock associated with the Basalt of Waverly Heights unit, mapped by Beeson and others (1989). It was encountered at a depth of about 15 feet in both borings, and both borings were terminated in the unit. The maximum penetration into the unit was about 18.5 feet, made in boring B-1. In general, the unit consists of stiff to hard, light gray, red, and yellow-brown to brown Elastic Silt (MH) and Fat Clay (CH), with trace to little fine to coarse sand and trace gravel. The material is often blocky, where the majority of it easily remolds to Elastic Silt or Fat Clay, but with few gravel and sand-sized fragments resisting further breakdown. Trace non-mudstone sand and gravel particles, usually more rounded, were also observed. SPT N-values in the unit ranged from 16 to 81 bpf and averaged 36 bpf. Natural moisture content analyses ranged from 27 to 48 percent, and averaged 39 percent. An Atterberg limits test on one specimen indicated a plasticity index of 29.

5.5 Groundwater

During drilling, static groundwater was encountered at depths of approximately 7 feet in boring B-1 (El 98 feet) and 10 feet in boring B-2 (El 100 feet). The groundwater depths were generally consistent with the water surface elevation of Tryon Creek at the time of the explorations. Based on information from Otak, we understand that the ordinary high water level is at EL 102 feet. Possible perched water was observed during drilling in boring B-2 at a depth of about 7 feet (El 103). Groundwater levels should be expected to fluctuate seasonally and with changes in precipitation, land use, and other factors. In general, we expect groundwater levels in this area to be at a seasonal high during the winter and late spring and at a seasonal low during the late summer and early fall.

6.0 SITE-SPECIFIC SEISMIC HAZARD EVALUATION

6.1 Seismic Acceleration and Soil Profile

The ODOT BDDM recommends that the peak ground acceleration (PGA) and other seismic ground motions be obtained from the 2002 U.S. Geological Survey (USGS) Seismic Hazard Maps for the Pacific Northwest Region. The Seismic Site Class was developed based on the recommended procedure, using SPT N-values, in the 2012 AASHTO BDS. The site is classified as Site Class E based on our calculation of the weighted average SPT N-value. The recommended lower- and upper-level ground motion parameters, 500-year and 1,000-year return periods respectively, are in Table 2.
TABLE 2: RECOMMENDED SEISMIC DESIGN CRITERIA

<table>
<thead>
<tr>
<th>Seismic Parameter</th>
<th>Lower Level (500-year return period)</th>
<th>Upper Level (1,000-year return period)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Site Class</td>
<td>E</td>
<td>E</td>
</tr>
<tr>
<td>Site Factor, F_{pga}</td>
<td>1.78</td>
<td>1.35</td>
</tr>
<tr>
<td>Peak Ground (Bedrock) Acceleration, PGA</td>
<td>0.19 g</td>
<td>0.27 g</td>
</tr>
<tr>
<td>Site Factor, F_{a}</td>
<td>1.90</td>
<td>1.44</td>
</tr>
<tr>
<td>Peak Ground Surface Acceleration, A_s</td>
<td>0.34</td>
<td>0.36</td>
</tr>
<tr>
<td>Short Period Acceleration, S_s</td>
<td>0.44 g</td>
<td>0.63 g</td>
</tr>
<tr>
<td>Site Factor, F_c</td>
<td>3.35</td>
<td>3.26</td>
</tr>
<tr>
<td>Long Period Acceleration, S_l</td>
<td>0.15 g</td>
<td>0.22 g</td>
</tr>
</tbody>
</table>

Note: $g = gravity$ acceleration

6.2 Site Seismic Hazards

The expected seismic hazards at the project site include ground shaking, liquefaction and liquefaction-induced settlement, lateral spreading, and global instability of the eastern abutment. Based on our evaluation, other seismic hazards such as fault rupture, tsunami, and seiche are unlikely in the immediate vicinity of the proposed structure.

6.2.1 Liquefaction Potential Analysis

Liquefaction of loose, saturated, cohesionless soils due to seismic loading has been studied over the past 35 years, resulting in methods based on both laboratory and field procedures to evaluate liquefaction potential. In this project, we used Youd et al. (2001) and Boulanger and Idriss (2006) methods to evaluate liquefaction potential of the soils.

Soil behavior under seismic loading is the primary factor in determining the susceptibility of a soil to liquefaction. An important factor in evaluating soil behavior is the fines content (percent of soil by weight smaller than 0.075 millimeter), and the plasticity characteristics of the soil deposit. We performed grain size analyses and Atterberg limits analyses on soil samples from the field explorations to evaluate the index parameters of the soils at the site. Those parameters were considered as part of the liquefaction potential evaluation.

We performed a liquefaction analysis for cohesionless soils using an earthquake of magnitude 9.0 obtained from the probabilistic ground motion studies conducted by the USGS and Frankel, et al. (2002). The liquefaction potential analysis indicated that the loose to medium dense alluvial sand and nonplastic to low plasticity silt on the eastern and western abutments overlying the mudstone will likely experience liquefaction for both 500-year and 1,000-year...
events. Liquefaction is anticipated at elevations between 102 and 95 feet at the west abutment, and between elevations of 102 and 90 feet at the east abutment.

We performed liquefaction potential assessment for fine-grained soils using the Boulanger and Idriss (2006) method. Boulanger and Idriss (2006) provide recommendations that the fine-grained soils with plasticity index greater than 7 would not be liquefiable. Laboratory tests, including visual-manual identification and Atterberg limits, indicated that the plasticity index of the alluvial soils is typically 5 or less; therefore, in our opinion, these soils are liquefiable.

One of the potential consequences of liquefaction is ground settlement. The liquefaction-induced settlement on the west side of the bridge is estimated to be the range of 2 to 3 inches for both 500- and 1,000-year events. The liquefaction-induced settlement on the east side of the bridge is estimated to be the range of 3 to 4 inches for both 500- and 1,000-year events. Consequently, deformation of the bridge approach embankments may occur, and downdrag loads may be induced on foundations as a result of this magnitude of settlement.

6.2.2 Lateral Spreading and Post-Liquefaction Slope Stability

Lateral spreading and post-liquefaction slope stability were evaluated for both bridge abutments. A detailed discussion of our global stability analyses is presented in Section 7. Our slope stability analysis indicates that the factor of safety at the east and west abutments is greater than 1.1 and the slope will not fail during the design seismic event. Some sloughing and shallow failures may occur along the stream bank during the design seismic event; however, our analysis indicates that the slope failure will not extend to the proposed abutment locations.

7.0 DESIGN CONCLUSIONS AND RECOMMENDATIONS

7.1 Bridge Foundation Alternatives

Based on the presence of soft, compressible, and potentially liquefiable soils and the potential for stream bank erosion, we anticipate that the bridge will be supported on intermediate foundations such as pin piles advanced into the very stiff silt (mudstone). The type of intermediate foundations used will be a function of the design requirements, as well as site access constraints. Equipment used to install the foundation system will need to be mobilized to the site from the trailhead while minimizing the disturbance to vegetated areas off the trail. Because of site access constraints, our recommendations focus on systems that can be installed and mobilized to the site on track-mounted equipment with a track width of 4 feet or less. Specifically, we have provided recommendations for 4-inch-diameter driven pin piles, and 8-inch-diameter drilled-in piles.
Piles should be installed no closer together than three pile diameters, measured from center-to-center, and within 6 inches of locations shown on the plans. No pile should be closer than 4 inches to any edge of the pile cap. Piles should be installed with a maximum deviation from vertical of not more than 4 inches in 10 feet. In addition, as a project-specific provision, we recommend that the steel piles be installed full-length without splicing.

7.1.1 Driven Pin Piles

Pin piles with diameters of up to 4 inches can be driven at the site using hand-held pneumatic hammers. Design axial capacities of up to 10 kips can be achieved using 4-inch diameter pin piles driven to the stiff to hard silt and clay (weathered Mudstone). The design axial capacity includes a factor of safety of 3. The pin piles should be installed to a minimum tip elevation that corresponds to the top of the mudstone. The anticipated top of mudstone elevation is at approximately El 95 feet at the West Abutment and approximately El 90 feet at the East Abutment. If refusal (e.g., on wood debris) is encountered above the weathered mudstone, predrilling will be required.

To achieve the required design capacity of 10 kips, the piles should be installed to practical refusal in the mudstone formation. For the purposes of confirming the 10 kip pile capacity, refusal should be defined as ¾” or less of penetration during 1 minute of sustained driving with a 300 pound pneumatic Collins hammer or equivalent. Based on estimated tip penetrations 5 feet into the weathered rock and pile cap elevations of 105 and 103 feet, the pile lengths will be approximately 15 and 18 feet at the western and eastern abutments, respectively (not including pile embedment into the pile cap).

7.1.2 Drilled-In Pin Piles

Drilled-in pin piles are constructed by making a cylindrical bore to the prescribed bearing stratum with an auger drilling technique. A pin pile is placed in the borehole and concrete is placed, using tremie methods, to complete the drilled-in pin pile. Boreholes up to 8 inches in diameter can be advance using drilling equipment mounted on 4-foot-wide, rubber-tracked machines, such as a Baretta T46 drill rig. Pin piles with nominal diameters of up to 6 inches can be placed in an 8-inch hole.

We recommend the drilled-in piles be socketed into the weathered mudstone formation at least 5 feet in order to develop the required resistance and account for potential variability in material quality and strength. We recommend that the pile tips should be at, or lower than, an elevation of 90 feet for the western abutment and 85 feet for the eastern abutment in order to
achieve design loads of 15 kips per pile. Based on these tip elevations, and pile cap elevations of 105 and 103 feet, the pile lengths will be approximately 15 and 18 feet at the western and eastern abutments, respectively (not including pile embedment into the pile cap).

7.1.3 Lateral Pile Load Capacity

The pile foundations will be subjected to lateral loads resulting from live loads, wind, and earthquake loading. We understand that the laterally loaded pile analyses will be performed with the aid of the “LPILE” computer program. Due to different subsurface conditions at each bent, separate soil models are required for each one. We developed four sets of LPILE parameters: one for static and pseudo-static conditions at each abutment, and one for post-seismic (liquefied) conditions at the each abutment. The static/pseudo-static case input parameters are provided in Tables 3 and 4 for the east and west abutments, respectively. The post-seismic case input parameters for the east and west abutments are provided in Tables 5 and 6. Groundwater should be assumed at an elevation of 102 feet.

TABLE 3: LPILE PLUS 5.0 GEOTECHNICAL INPUT PARAMETERS, EAST ABUTMENT

<table>
<thead>
<tr>
<th>Soil Layer</th>
<th>Top of Layer El. (ft)</th>
<th>Top of Layer Depth (in)</th>
<th>p-y Model</th>
<th>Soil Unit Weight (pci)</th>
<th>Friction Angle (deg)</th>
<th>Undrained Shear Strength (psi)</th>
<th>E₅₀</th>
<th>p-y Modulus, k (pci)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fill and Alluvium (above GWT)</td>
<td>106</td>
<td>0</td>
<td>Soft clay</td>
<td>0.064</td>
<td>--</td>
<td>2.8</td>
<td>0.019</td>
<td>40</td>
</tr>
<tr>
<td>Alluvium (below GWT)</td>
<td>102</td>
<td>48</td>
<td>Soft clay</td>
<td>0.028</td>
<td>--</td>
<td>2.8</td>
<td>0.019</td>
<td>40</td>
</tr>
<tr>
<td>Alluvium (below GWT)</td>
<td>98</td>
<td>96</td>
<td>Reese Sand</td>
<td>0.028</td>
<td>32</td>
<td>--</td>
<td>--</td>
<td>50</td>
</tr>
<tr>
<td>Alluvium (below GWT)</td>
<td>95</td>
<td>132</td>
<td>Reese Sand</td>
<td>0.028</td>
<td>26</td>
<td>--</td>
<td>--</td>
<td>25</td>
</tr>
<tr>
<td>Weathered Mudstone</td>
<td>90</td>
<td>192</td>
<td>Stiff Clay w/o water</td>
<td>0.036</td>
<td>--</td>
<td>16.0</td>
<td>0.006</td>
<td>100</td>
</tr>
</tbody>
</table>
TABLE 4: LPILE PLUS 5.0 GEOTECHNICAL INPUT PARAMETERS, WEST ABUTMENT

<table>
<thead>
<tr>
<th>Soil Layer</th>
<th>Top of Layer El. (ft)</th>
<th>Top of Layer Depth (in)</th>
<th>p-y Model</th>
<th>Soil Unit Weight (pci)</th>
<th>Friction Angle (deg)</th>
<th>Undrained Shear Strength (psi)</th>
<th>E<sub>50</sub></th>
<th>p-y Modulus, k (pci)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alluvium (above GWT)</td>
<td>106</td>
<td>0</td>
<td>Soft clay</td>
<td>0.064</td>
<td>--</td>
<td>2.8</td>
<td>0.019</td>
<td>40</td>
</tr>
<tr>
<td>Alluvium (below GWT)</td>
<td>102</td>
<td>48</td>
<td>Soft clay</td>
<td>0.028</td>
<td>--</td>
<td>2.8</td>
<td>0.019</td>
<td>40</td>
</tr>
<tr>
<td>Alluvium (below GWT)</td>
<td>98</td>
<td>96</td>
<td>Reese Sand</td>
<td>0.028</td>
<td>29</td>
<td>--</td>
<td>--</td>
<td>25</td>
</tr>
<tr>
<td>Weathered Mudstone</td>
<td>94.9</td>
<td>133.2</td>
<td>Stiff Clay w/o Free Water</td>
<td>0.036</td>
<td>--</td>
<td>16.0</td>
<td>0.006</td>
<td>100</td>
</tr>
</tbody>
</table>

TABLE 5: POST-SEISMIC LPILE PLUS 5.0 GEOTECHNICAL INPUT PARAMETERS, EAST ABUTMENT

<table>
<thead>
<tr>
<th>Soil Layer</th>
<th>Top of Layer El. (ft)</th>
<th>Top of Layer Depth (in)</th>
<th>p-y Model</th>
<th>Soil Unit Weight (pci)</th>
<th>Friction Angle (deg)</th>
<th>Undrained Shear Strength (psi)</th>
<th>E<sub>50</sub></th>
<th>p-y Modulus, k (pci)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fill and Alluvium (above GWT)</td>
<td>106</td>
<td>0</td>
<td>Soft clay</td>
<td>0.064</td>
<td>--</td>
<td>2.8</td>
<td>0.019</td>
<td>40</td>
</tr>
<tr>
<td>Alluvium (below GWT)</td>
<td>102</td>
<td>48</td>
<td>Soft clay</td>
<td>0.028</td>
<td>--</td>
<td>0.35</td>
<td>0.019</td>
<td>10</td>
</tr>
<tr>
<td>Alluvium (below GWT)</td>
<td>98</td>
<td>96</td>
<td>Reese Sand</td>
<td>0.028</td>
<td>20</td>
<td>--</td>
<td>--</td>
<td>5</td>
</tr>
<tr>
<td>Alluvium (below GWT)</td>
<td>95</td>
<td>132</td>
<td>Reese Sand</td>
<td>0.028</td>
<td>15</td>
<td>--</td>
<td>--</td>
<td>5</td>
</tr>
<tr>
<td>Weathered Mudstone</td>
<td>90</td>
<td>192</td>
<td>Stiff Clay w/o water</td>
<td>0.036</td>
<td>--</td>
<td>16.0</td>
<td>0.006</td>
<td>100</td>
</tr>
</tbody>
</table>

TABLE 6: POST-SEISMIC LPILE PLUS 5.0 GEOTECHNICAL INPUT PARAMETERS, WEST ABUTMENT

<table>
<thead>
<tr>
<th>Soil Layer</th>
<th>Top of Layer El. (ft)</th>
<th>Top of Layer Depth (in)</th>
<th>p-y Model</th>
<th>Soil Unit Weight (pci)</th>
<th>Friction Angle (deg)</th>
<th>Undrained Shear Strength (psi)</th>
<th>E<sub>50</sub></th>
<th>p-y Modulus, k (pci)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alluvium (above GWT)</td>
<td>106</td>
<td>0</td>
<td>Soft clay</td>
<td>0.064</td>
<td>--</td>
<td>2.8</td>
<td>0.019</td>
<td>40</td>
</tr>
<tr>
<td>Alluvium (below GWT)</td>
<td>102</td>
<td>48</td>
<td>Soft clay</td>
<td>0.028</td>
<td>--</td>
<td>0.35</td>
<td>0.019</td>
<td>10</td>
</tr>
<tr>
<td>Alluvium (below GWT)</td>
<td>98</td>
<td>96</td>
<td>Reese Sand</td>
<td>0.028</td>
<td>15</td>
<td>--</td>
<td>--</td>
<td>5</td>
</tr>
<tr>
<td>Weathered Mudstone</td>
<td>94.9</td>
<td>133.2</td>
<td>Stiff Clay w/o Free Water</td>
<td>0.045</td>
<td>--</td>
<td>16.0</td>
<td>0.006</td>
<td>100</td>
</tr>
</tbody>
</table>
If the pile horizontal spacing is less than five times the pile diameter, a pile group reduction factor should be applied, based on the ODOT BDDM.

7.2 Bridge Abutment Wall Design Recommendations

7.2.1 General

We understand that the abutments will be up to approximately 5 feet in height, and that the east and west bent may have integral abutments. The lateral earth pressures on the abutment and wing walls depend on the type of wall (i.e., yielding or non-yielding), the type and method of placement of backfill against the wall, the drainage behind the wall, and the magnitude of surcharge weight on the ground surface adjacent to the wall, the slope of the backfill, and the design criteria. Integral abutment walls are typically designed as non-yielding walls under both static and seismic loading conditions. For design purposes, we assumed that the backfill behind the walls is flat within approximately 5 feet of the wall. Also, we have assumed that subdrainage systems will be installed to prevent hydrostatic pressure from developing behind the abutment walls.

7.2.2 Lateral Earth Pressures

Based upon the structural design information and the above assumptions, the lateral earth pressures on the walls were developed according to the ODOT Geotechnical Design Manual and AASHTO LRFD Bridge Design Manual. The static lateral earth pressure acting on walls consists of two components: static earth pressure and static surcharge pressure. The seismic lateral earth pressure on walls consists of three components: static earth pressure, static surcharge pressure, and seismic earth pressure. A horizontal acceleration coefficient, kh, equal to the site peak ground acceleration (F_{pga} x PGA), A_s, was used to determine the seismic earth pressure for non-yielding walls. A kh equal to $\frac{1}{2}$ of A_s was used to determine the seismic earth pressure for yielding walls. These lateral pressures are shown in Figure 3.

7.2.3 Subdrainage

Suitable drainage for excavated walls can be provided by granular backfill material and a wall base subdrain system consisting of a 6-inch-diameter perforated or slotted drain pipe wrapped in an envelope of filter material at least 12 inches thick and confined by a separation geotextile. The filter material is specified in Section 02610.10(a) of the OSSC. The subdrain should be above the ordinary high groundwater level, convey any collected seepage to the end of the wall, and daylight at low spots below the exposed wall elevation.
7.2.4 Wall Backfill Material and Compaction

The wall backfill material should use the standard ODOT granular wall backfill (OSSC, Section 00510.12). Heavy compaction equipment should not be allowed closer than 3 feet to the abutment or wing walls to prevent high lateral earth pressures and wall yielding and/or damage. Backfill compaction within 3 feet of the wall should be accomplished with a low-weight compactor such as a hand-operated vibratory plate compactor.

7.3 Slope Stability Analyses

We evaluated the slope stability of the proposed abutments as part of our analysis. Slope stability is influenced by various factors including: (1) the geometry of the soil mass and subsurface materials; (2) the weight of soil materials overlying the failure surface; (3) the shear strength of soils and/or rock along the failure surface; and (4) the hydrostatic pressure (groundwater levels) present within the landslide mass and along the failure surface.

The stability of a slope is expressed in terms of factor of safety, FS, which is defined as the ratio of resisting forces to driving forces. At equilibrium, the FS is equal to 1.0, and the driving forces are balanced by the resisting forces. Failure occurs when the driving forces exceed the resisting forces, i.e., FS less than 1.0. An increase in the factor of safety above 1.0, whether by increasing the resisting forces or decreasing the driving forces, reflects a corresponding increase in the stability of the mass. The actual factor of safety may differ from the calculated factor of safety due to variations in soil strengths, subsurface geometry, failure surface location and orientation, groundwater levels, and other factors that are not completely known or understood.

In this regard, we have used information developed from the field explorations, laboratory testing, and our experience with similar materials to develop the slope stability analysis model. Our engineering analyses and conclusions are based upon the assumption that subsurface conditions everywhere within the potential slide mass are not significantly different from those encountered by the field explorations.

The stability analysis was performed using the Morgenstern and Price method with the aid of the computer program SLOPE/W (GEO-SLOPE, Alberta, Canada). The analyses included calculations of factors of safety for various assumed conditions at each abutment. In our analysis, we assumed that soil was removed to the pile cap elevation. Based on information from Otak, we assumed the base of the pile cap elevation was at El 105 feet at west abutment and El 102 feet at the east abutment. The FS for the proposed western embankment slope during static conditions is 1.5. The western abutment has an FS of 1.1 during seismic conditions and
1.2 during the post-seismic condition. The FS for the proposed eastern embankment slope during static conditions is 2.6. The eastern abutment has an FS of 1.2 during seismic conditions and 2.3 during the post-seismic condition. The ODOT GDM recommends that slopes at bridge abutments have a minimum factor of safety of 1.5 during static conditions and a minimum factor of safety of 1.1 during seismic and post-seismic conditions. Therefore, all of the evaluations indicate that the proposed geometry meets the criteria in the ODOT GDM.

8.0 GEOTECHNICAL CONSTRUCTION CONSIDERATIONS

8.1 General

The key construction considerations directly affecting the proposed bridge design conclusions and recommendations were discussed in Section 9.0 of this report. The construction considerations discussed herein are primarily related to site earthwork.

8.2 Site Preparation/Earthwork

8.2.1 Site Preparation and Excavation

Site preparation will include: (1) clearing, and grubbing (2) removal of existing structures and underground utilities, and (3) subgrade preparation and excavation. These construction activities should generally be accomplished in accordance with OSSC Section 00300.

8.2.2 Cut-and-Fill Slopes

It is our opinion that permanent cut-and-fill slopes should not be steeper than 2H:1V. Temporary cut slopes are typically the responsibility of the contractor and should comply with applicable local, state, and federal safety regulations, including the current OSHA Excavation and Trench Safety Standards. For general guidance, we suggest that temporary construction slopes be made at 1H:1V or flatter.

8.2.3 Embankment Construction

We understand that site fills will be primarily limited to the area immediately behind the retaining walls and as such should consist of ODOT granular wall backfill (OSSC, Section 00510.12). If construction of the embankments is required, we recommend that ODOT Stone Embankment Material (OSSC, Section 00330.16) be used for embankment construction for any embankments with slopes steeper than 2H:1V or during wet weather construction, regardless of the embankment slope. Borrow material (OSSC, Section 0330.12) may be used for embankment construction for embankments with slopes flatter than 2H:1V during dry weather. If general
borrow material is used to construct the embankments, significant moisture conditioning of the material may be required that can typically only be performed during the dry summer months.

Careful observation and quality control during construction is required to reduce the potential for settlements if an embankment is constructed with borrow material. Important aspects of embankment construction include: maintaining proper lift thicknesses, controlling soil moisture within the optimum range, and providing the appropriate type and method of compactive effort. Our experience suggests that inappropriate compaction and fill placement of cohesive borrow material often results in additional settlement after the first one or two wet seasons. Placement of the fill material and compaction should follow the OSSC requirements.

9.0 LIMITATIONS

The analyses, conclusions, and recommendations contained in this report are based upon site conditions as they presently exist and further assume that the borings are representative of subsurface conditions throughout the site, i.e., the subsurface conditions everywhere are not significantly different from those disclosed by the field explorations.

If, during construction, subsurface conditions different from those encountered in the field explorations are observed or appear to be present beneath excavations, we should be advised at once so that we can review these conditions and reconsider our recommendations where necessary. If there is a substantial lapse of time between the submission of this report and start of work at the site, or if conditions have changed due to natural causes or construction operations at or adjacent to the site, it is recommended that this report be reviewed to determine the applicability of these conclusions and recommendations, considering the changed conditions and the elapsed time.

Please note that the scope of our services did not include any environmental assessment or evaluation regarding the presence or absence of hazardous or toxic materials in the soil, surface water, groundwater, or air, on or below or around the project site.

We recommend that Shannon & Wilson review the geotechnical portions of the plans and specifications, especially those parts that address bridge foundations, retaining walls, embankments, and earthwork, to determine if they are consistent with our recommendations.

This report is prepared for the exclusive use of Otak, Inc., and the Iron Mountain Bridge project team for the design and construction of the proposed bridge replacement. Unanticipated soil conditions are commonly encountered and cannot fully be determined by merely taking soil samples from geotechnical borings. Such unexpected conditions frequently require that
additional expenditures be made to attain properly constructed projects. This report is not a warranty of subsurface conditions described in this report. Shannon & Wilson, Inc., has prepared the attached, “Important Information About Your Geotechnical/Environmental Report,” to assist you and others in understanding the use and limitations of our reports. This attachment is presented in Appendix D of this report.

SHANNON & WILSON, INC.

Risheng (Park) Piao, PE, GE
Principal-In-Charge, Vice President

Elliott C. Mecham, PE
Project Manager, Senior Principal Engineer

ECM/RPP:aeh/amn
10.0 REFERENCES

Bela, J.L., 1979, Geologic hazards of eastern Benton County, Oregon: Oregon Department of Geology and Mineral Industries Bulletin B-98, 122 p., 58 figs., 14 tables, 5 geology and geologic hazard maps [1:24,000].

LPILE plus version 5.0.12, 2004, Ensoft Inc., Austin, Texas.

Oregon Department of Transportation, September 2013, Geotechnical Design Manual: Salem, Oreg., 3 v., available:

Iron Mountain Sewer and Pedestrian Bridge
Lake Oswego, Oregon

Note:
Basemap from ArcGIS online server.
Approximate Location and Designation of Boring (2014)

Approximate Location and Designation of Hand Auger Boring (2012)

Stream Centerline
Stream Edge
Sanitary Sewer Line
Sanitary Sewer Manhole
Bridge Pile

Explanations:
- HA-1
- HA-2
- HA-3
- HA-4
- HA-5
- HA-6
- B-1
- B-2

Scale in Feet

Iron Mountain Sewer and Pedestrian Bridge
Lake Oswego, Oregon

SITE AND EXPLORATION PLAN
May 2014
24-1-03734-002
SHANNON & WILSON, INC.
Geotechnical and Environmental Consultants
FIG. 2
LATERAL EARTH PRESSURE DISTRIBUTION ON WALLS

YIELDING WALL SOIL COMPONENT

\[P_y = \text{[PRESSURE VALUE]} \times \frac{H}{2} \]

RESULTANT FORCE \((P_y) \)

\[\frac{1}{2} H \]

SEISMIC BACKFILL COMPONENT

\[P_s = \text{[PRESSURE VALUE]} \times \frac{H}{2} \]

RESULTANT FORCE \((P_s) \)

\[0.6H \]

YIELDING WALL SURCHARGE COMPONENT

\[P_s = \text{[PRESSURE VALUE]} \times \frac{H}{2} \]

RESULTANT FORCE \((P_s) \)

\[\frac{1}{2} H \]

NON-YIELDING WALL SOIL COMPONENT

\[P_n = \text{[PRESSURE VALUE]} \times \frac{H}{2} \]

RESULTANT FORCE \((P_n) \)

\[\frac{1}{2} H \]

NON-YIELDING WALL SURCHARGE COMPONENT

\[P_n = \text{[PRESSURE VALUE]} \times \frac{H}{2} \]

RESULTANT FORCE \((P_n) \)

\[\frac{1}{2} H \]

SEISMIC BACKFILL COMPONENT

\[P_s = \text{[PRESSURE VALUE]} \times \frac{H}{2} \]

RESULTANT FORCE \((P_s) \)

\[0.6H \]

NON-YIELDING WALL SURCHARGE COMPONENT

\[P_n = \text{[PRESSURE VALUE]} \times \frac{H}{2} \]

RESULTANT FORCE \((P_n) \)

\[\frac{1}{2} H \]

SOIL BACKFILL COMPONENT

\[\text{SOIL BACKFILL COMPONENT} \]

SURCHARGE COMPONENT

\[\text{SURCHARGE COMPONENT} \]

SEISMIC BACKFILL COMPONENT

\[\text{SEISMIC BACKFILL COMPONENT} \]

NOTES:

1. Backfill unit weight of 130 pcf.
2. Backfill friction angle is 34 deg.
3. Wall backfill is assumed to be drained imported granular material.
4. Seismic pressures provided for peak ground acceleration associated with the 500-year and the 1,000-year earthquakes (see table for values).
5. Typical traffic surcharge of 250 psf should be applied.

Iron Mountain Sewer and Pedestrian Bridge
Lake Oswego, Oregon

LATERAL EARTH PRESSURE DISTRIBUTION ON WALLS

May 2014

SHANNON & WILSON, INC.
Geotechnical and Environmental Consultants

FIG. 3
APPENDIX A

FIELD EXPLORATIONS
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.1 GENERAL</td>
<td>A-1</td>
</tr>
<tr>
<td>A.1.1 Drilling</td>
<td>A-1</td>
</tr>
<tr>
<td>A.1.1 Disturbed Sampling</td>
<td>A-1</td>
</tr>
<tr>
<td>A.1.2 Undisturbed Sampling</td>
<td>A-2</td>
</tr>
<tr>
<td>A.1.3 Borehole Abandonment</td>
<td>A-2</td>
</tr>
<tr>
<td>A.1.4 Material Descriptions</td>
<td>A-2</td>
</tr>
<tr>
<td>A.1.5 Logs of Borings</td>
<td>A-3</td>
</tr>
</tbody>
</table>

FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>Soil Description and Log Key</td>
</tr>
<tr>
<td>A2</td>
<td>Log of Boring B-1</td>
</tr>
<tr>
<td>A3</td>
<td>Log of Boring B-2</td>
</tr>
</tbody>
</table>
APPENDIX A

FIELD EXPLORATIONS

A.1 GENERAL

Shannon & Wilson, Inc., explored subsurface conditions at the project site with two geotechnical borings. The borings were designated B-1 and B-2 and were drilled to depths of 33.5 and 23.5 feet below the ground surface, respectively. The locations of the completed borings were measured in the field relative to the existing bridge. Approximate locations are shown on the Site and Exploration Plan, Figure 2. This appendix describes the techniques used to advance and sample the borings and presents logs of the materials encountered during drilling.

A.1.1 Drilling

Borings B-1 and B-2 were drilled between March 24 and March 25, 2014. The borings were drilled using a “Big Beaver” cart-mounted rotary drill rig provided and operated by PLI Systems of Hillsboro, Oregon. Boring B-1 was drilled using solid-stem auger drilling techniques. Boring B-2 was started with hollow stem auger drilling techniques, and solid-stem auger techniques were used to complete the hole after wood was encountered at a depth of 9 feet. A Shannon & Wilson representative was present during drilling to locate the borings, observe the drilling, collect soil samples, and log the materials encountered.

A.1.1 Disturbed Sampling

Disturbed samples were collected in the borings, typically at 2- to 4-foot depth intervals, using a standard 2-inch outside diameter (O.D.) split spoon sampler in conjunction with Standard Penetration Testing. In a Standard Penetration Test (SPT), ASTM D1586, the sampler is driven 18 inches into the soil using a 140-pound hammer dropped 30 inches. The number of blows required to drive the sampler the last 12 inches is defined as the standard penetration resistance, or N-value. The SPT N-value provides a measure of in-situ relative density of cohesionless soils (silt, sand, and gravel), and the consistency of cohesive soils (silt and clay). All disturbed samples were visually identified and described in the field, sealed to retain moisture, and returned to our laboratory for additional examination and testing.

SPT N-values can be significantly affected by several factors, including the efficiency of the hammer used. A manual (cathead) hammer was used for all standard penetration tests in borings B-1 and B-2. Cathead hammers are generally assumed to have an energy efficiency of
60 percent. All N-values presented in this report are in blows per foot, as counted in the field. No corrections of any kind have been applied.

An SPT was considered to have met refusal where more than 50 blows were required to drive the sampler 6 inches. If refusal was encountered in the first 6-inch interval (for example, 50 for 1.5’’), the count is reported as 50/1st 1.5”. If refusal was encountered in the second 6-inch interval (for example, 48, 50 for 1.5”), the count is reported as 50/1.5”. If refusal was encountered in the last 6-inch interval (for example, 39, 48, 50 for 1.5”), the count is reported as 98/7.5”.

A.1.2 Undisturbed Sampling

Undisturbed samples were collected in 3-inch O.D. thin-wall Shelby tubes, which were pushed into the undisturbed soil at the bottoms of boreholes hydraulically. The soils exposed at the ends of the tubes were examined and described in the field. After examination, the ends of the tubes were sealed to preserve the natural moisture of the samples. The sealed tubes were stored in the upright position, and care was taken to avoid shock and vibration during their transport and storage in our laboratory.

A.1.3 Borehole Abandonment

After drilling, the boreholes were backfilled with bentonite chips in accordance with Oregon Water Resource Department regulations. No wells or other instruments were installed in the boreholes.

A.1.4 Material Descriptions

Soil samples were described and identified visually in the field in general accordance with ASTM D2488, Standard Practice for Description and Identification of Soils (Visual-Manual Procedure). The specific terminology used is defined in the Soil Description and Log Key, Figure A1. Consistency, color, relative moisture, degree of plasticity, peculiar odors, and other distinguishing characteristics of the samples were noted. Once transported to our laboratory, the samples were re-examined, various classification tests were performed, and the field descriptions and identifications were modified where necessary. We refined our visual-manual soil descriptions and identifications based on the results of the laboratory tests, using elements of the Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System), ASTM D2487. However, ASTM D2487 was not followed in full because it requires that a suite of tests be performed to fully classify a single sample.
A.1.5 Logs of Borings

Summary logs of borings are presented in Figures A2 and A3. Soil descriptions and interfaces on the logs are interpretive, and actual changes may be gradual. The left-hand portion of the boring logs gives our description, identification, and geotechnical unit designation for the soils encountered in the boring. The right-hand portion of the boring logs shows a graphic log, sample locations and designations, groundwater information, and a graphical representation of N-values, natural water contents, sample recovery, Atterberg limits, and fines content.
Shannon & Wilson, Inc. (S&W), uses a soil identification system modified from the Unified Soil Classification System (USCS). Elements of the USCS and other definitions are provided on this and the following pages. Soil descriptions are based on visual-manual procedures (ASTM D2488) and laboratory testing procedures (ASTM D2487), if performed.

S&W INORGANIC SOIL CONSTITUENT DEFINITIONS

<table>
<thead>
<tr>
<th>CONSTITUENT</th>
<th>FINE-GRAINED SOILS (50% or more fines)</th>
<th>COARSE-GRAINED SOILS (less than 50% fines)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Major</td>
<td>Silt, Lean Clay, Elastic Silt, or Fat Clay</td>
<td>Sand or Gravel</td>
</tr>
<tr>
<td>Modifying (Secondary) Precedes major constituent</td>
<td>30% or more coarse-grained: Sandy or Gravelly</td>
<td>More than 12% fine-grained: Silty or Clayey</td>
</tr>
<tr>
<td>Minor Follows major constituent</td>
<td>15% to 30% coarse-grained: with Sand or with Gravel</td>
<td>5% to 12% fine-grained: with Silt or with Clay</td>
</tr>
<tr>
<td></td>
<td>30% or more total coarse-grained and lesser coarse-grained constituent is 15% or more: with Sand or with Gravel</td>
<td>15% or more of a second coarse-grained constituent: with Sand or with Gravel</td>
</tr>
</tbody>
</table>

1. All percentages are by weight of total specimen passing a 3-inch sieve.
2. The order of terms is: Modifying Major with Minor.
3. Determined based on behavior.
4. Determined based on which constituent comprises a larger percentage.
5. Whichever is the lesser constituent.

MOISTURE CONTENT TERMS

- Dry: Absence of moisture, dusty, dry to the touch
- Moist: Damp but no visible water
- Wet: Visible free water, from below water table

STANDARD PENETRATION TEST (SPT) SPECIFICATIONS

- Hammer: 140 pounds with a 30-inch free fall. Rope on 6- to 10-inch-diam. cathead 2-1/4 rope turns, > 100 rpm
- Sampler: 10 to 30 inches long
 - Shoe I.D. = 1.375 inches
 - Barrel I.D. = 1.5 inches
 - Barrel O.D. = 2 inches
- N-Value: Sum blow counts for second and third 6-inch increments. Refusal: 50 blows for 6 inches or less; 10 blows for 0 inches.

PERCENTAGES TERMS

1. Gravel, sand, and fines estimated by mass. Other constituents, such as organics, cobbles, and boulders, estimated by volume.

RELATIVE DENSITY / CONSISTENCY

<table>
<thead>
<tr>
<th>N, SPT, BLOWS/FT.</th>
<th>RELATIVE DENSITY</th>
<th>N, SPT, BLOWS/FT.</th>
<th>RELATIVE CONSISTENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 4</td>
<td>Very loose</td>
<td>< 2</td>
<td>Very soft</td>
</tr>
<tr>
<td>4 - 10</td>
<td>Loose</td>
<td>2 - 4</td>
<td>Soft</td>
</tr>
<tr>
<td>10 - 30</td>
<td>Medium dense</td>
<td>4 - 8</td>
<td>Medium stiff</td>
</tr>
<tr>
<td>30 - 50</td>
<td>Dense</td>
<td>8 - 15</td>
<td>Stiff</td>
</tr>
<tr>
<td>> 50</td>
<td>Very dense</td>
<td>15 - 30</td>
<td>Very stiff</td>
</tr>
<tr>
<td></td>
<td></td>
<td>> 30</td>
<td>Hard</td>
</tr>
</tbody>
</table>

WELL AND BACKFILL SYMBOLS

- Bentonite Cement Grout
- Bentonite Grout
- Bentonite Chips
- Silica Sand
- Gravel
- Perforated or Screened Casing
- Surface Cement Seal
- Asphalt or Cap
- Slough
- Inclinometer or Non-perforated Casing
- Vibrating Wire Plezo}

Iron Mountain Sanitary Sewer and Pedestrian Bridge
Lake Oswego, Oregon

SOIL DESCRIPTION AND LOG KEY

March 2015

SHANNON & WILSON, INC.
Geotechnical and Environmental Consultants
UNIFIED SOIL CLASSIFICATION SYSTEM (USCS)
(Modified From USACE Tech Memo 3-357, ASTM D2487, and ASTM D2488)

<table>
<thead>
<tr>
<th>MAJOR DIVISIONS</th>
<th>GROUP/GRAPHIC SYMBOL</th>
<th>TYPICAL IDENTIFICATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>COARSE-GRAINED SOILS (more than 50% retained on No. 200 sieve)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gravels (more than 50% of coarse fraction retained on No. 4 sieve)</td>
<td>Gravel (less than 5% fines)</td>
<td>GW</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GP</td>
</tr>
<tr>
<td></td>
<td>Silty or Clayey Gravel (more than 12% fines)</td>
<td>GM</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GC</td>
</tr>
<tr>
<td></td>
<td>Sand (less than 5% fines)</td>
<td>SW</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SP</td>
</tr>
<tr>
<td></td>
<td>Silty or Clayey Sand (more than 12% fines)</td>
<td>SM</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SC</td>
</tr>
<tr>
<td>FINE-GRAINED SOILS (50% or more passes the No. 200 sieve)</td>
<td>Inorganic</td>
<td>ML</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Organic</td>
<td>OL</td>
</tr>
<tr>
<td></td>
<td>Silts and Clays (liquid limit less than 50)</td>
<td>MH</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CH</td>
</tr>
<tr>
<td></td>
<td>Organic</td>
<td>OH</td>
</tr>
<tr>
<td>HIGHLY-ORGANIC SOILS</td>
<td>Primarily organic matter, dark in color, and with organic odor</td>
<td>PT</td>
</tr>
<tr>
<td>FILL</td>
<td>Placed by humans, both engineered and nonengineered. May include various soil materials and debris.</td>
<td></td>
</tr>
</tbody>
</table>

NOTES

1. Dual symbols (symbols separated by a hyphen, i.e., SP-SM, Sand with Silt) are used for soils with between 5% and 12% fines or when the liquid limit and plasticity index values plot in the CL-ML area of the plasticity chart.

2. Borderline symbols (symbols separated by a slash, i.e., CL/ML, Lean Clay to Silt; SP-SM/SM, Sand with Silt to Silty Sand) indicate that the soil properties are close to the defining boundary between two groups.

3. The soil graphics above represent the various USCS identifications (i.e., GP, SM, etc.) and may be augmented with additional symbology to represent differences within USCS designations. Sandy Silt (ML), for example, may be accompanied by the ML soil graphic with sand grains added.
Grading Terms

<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poorly Graded</td>
<td>Narrow range of grain sizes present or, within the range of grain sizes present, one or more sizes are missing (Gap Graded). Meets criteria in ASTM D2488, if tested.</td>
</tr>
<tr>
<td>Well-Graded</td>
<td>Full range and even distribution of grain sizes present. Meets criteria in ASTM D2488, if tested.</td>
</tr>
</tbody>
</table>

Cemenation Terms

<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weak</td>
<td>Crumbles or breaks with handling or slight finger pressure</td>
</tr>
<tr>
<td>Moderate</td>
<td>Crumbles or breaks with considerable finger pressure</td>
</tr>
<tr>
<td>Strong</td>
<td>Will not crumble or break with finger pressure</td>
</tr>
</tbody>
</table>

Soil Description and Log Key

ACRONYMS AND ABBREVIATIONS

- ATD: At Time of Drilling
- approx.: Approximate/Approximately
- Diam.: Diameter
- Elev.: Elevation
- ft.: Feet
- FeO: Iron Oxide
- gal.: Gallons
- Horiz.: Horizontal
- HSA: Hollow Stem Auger
- I.D.: Inside Diameter
- in.: Inches
- lbs.: Pounds
- MgO: Magnesium Oxide
- mm: Millimeter
- MnO: Manganese Oxide
- NA: Not Applicable or Not Available
- NP: Nonplastic
- O.D.: Outside Diameter
- OW: Observation Well
- pci: Pounds per Cubic Foot
- PID: Photo-Ionization Detector
- PMT: Pressuremeter Test
- ppm: Parts per Million
- psi: Pounds per Square Inch
- PVC: Polyvinyl Chloride
- rpm: Rotations per Minute
- SPT: Standard Penetration Test
- USCS: Unified Soil Classification System
- \(q_u\): Unconfined Compressive Strength
- VWP: Vibrating Wire Piezometer
- Vert.: Vertical
- WOH: Weight of Hammer
- WOR: Weight of Rods
- Wt.: Weight

Gradation Terms

<table>
<thead>
<tr>
<th>Description</th>
<th>Visual-Manual Criteria</th>
<th>Approx. Plasticity Index Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nonplastic</td>
<td>A 1/8-in. thread cannot be rolled at any water content.</td>
<td>< 4%</td>
</tr>
<tr>
<td>Low</td>
<td>A thread can barely be rolled and a lump cannot be formed when drier than the plastic limit.</td>
<td>4 to 10%</td>
</tr>
<tr>
<td>Medium</td>
<td>A thread is easy to roll and not much time is required to reach the plastic limit. A lump crumbles when drier than the plastic limit.</td>
<td>10 to 20%</td>
</tr>
<tr>
<td>High</td>
<td>It take considerable time rolling and kneading to reach the plastic limit. A thread can be rolled several times after reaching the plastic limit. A lump can be formed without crumbling when drier than the plastic limit.</td>
<td>> 20%</td>
</tr>
</tbody>
</table>

Additional Terms

- Mottled: Irregular patches of different colors.
- Bioturbated: Soil disturbance or mixing by plants or animals.
- Diamict: Nonsorted sediment; sand and gravel in silt and/or clay matrix.
- Cuttings: Material brought to surface by drilling.
- Slough: Material that caved from sides of borehole.
- Sheared: Disturbed texture, mix of strengths.

Particle Angularity and Shape Terms

- Angular: Sharp edges and unpolished planar surfaces.
- Subangular: Similar to angular, but with rounded edges.
- Subrounded: Nearly planar sides with well-rounded edges.
- Rounded: Smoothly curved sides with no edges.
- Flat: Width/thickness ratio > 3.
- Elongated: Length/width ratio > 3.

Structure Terms

- Interbedded: Alternating layers of varying material or color with layers at least 1/4-inch thick; singular: bed.
- Laminated: Alternating layers of varying material or color with layers less than 1/4-inch thick; singular: lamina.
- Fissured: Breaks along definite planes or fractures with little resistance.
- Slickensided: Fracture planes appear polished or glossy; sometimes striated.
- Blocky: Cohesive soil that can be broken down into small angular lumps that resist further breakdown.
- Lensed: Inclusion of small pockets of different soils, such as small lenses of sand scattered through a mass of clay.
- Homogeneous: Same color and appearance throughout.

Soil Description and Log Key

March 2015

SHANNON & WILSON, INC.
Geotechnical and Environmental Consultants

Iron Mountain Sanitary Sewer and Pedestrian Bridge
Lake Oswego, Oregon

FIG. A1

Sheet 3 of 3
SOIL DESCRIPTION

Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines indicated below represent the approximate boundaries between soil types, and the transitions may be gradual.

FILL

Gray-brown, Silt (ML); moist; approx. 10% fine sand; nonplastic to low plasticity; some roots and concrete debris.

FILL

Soft, yellow-brown and red-yellow to gray, Silt (ML); moist; approx. 10% fine sand; nonplastic to low plasticity; micaceous.

FINE-GRAINED ALLUVIUM

Medium dense, gray, Silty Sand with Gravel (SM); wet; fine to coarse, subrounded gravel; fine to coarse sand; nonplastic fines.

SAND AND GRAVEL ALLUVIUM

Loose to medium dense, gray, Silt interbedded with Sandy Silt (ML); wet; fine sand; rapid dilatancy, nonplastic; micaceous.

FINE-GRAINED ALLUVIUM

Very stiff, light gray to blue-gray, Elastic Silt (MH) to Fat Clay (CH); moist; trace fine, subrounded to angular gravel; trace fine to coarse sand; high plasticity; some blocky zones.

WEATHERED MUDSTONE

Very stiff, light gray, red and yellow-brown, Fat Clay (CH); moist; trace fine, subrounded to angular gravel; trace fine to coarse sand; high plasticity; some blocky zones.

Grades to light gray at 28.0 ft.
SOIL DESCRIPTION

Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines indicated below represent the approximate boundaries between soil types, and the transitions may be gradual.

Hard, light gray, Fat Clay (CH); moist; trace fine, subrounded to subangular gravel; trace fine to coarse sand; high plasticity; some blocky zones.

WEATHERED MUDSTONE
Grades to brown at 32.0 ft.
Completed - March 25, 2014

<table>
<thead>
<tr>
<th>Elev. Depth (ft.)</th>
<th>Symbol</th>
<th>Samples</th>
<th>Ground Water Depth, ft.</th>
<th>PENETRATION RESISTANCE, N (blows/ft.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>71.5</td>
<td>S-11</td>
<td></td>
<td></td>
<td>▲ Hammer Wt. & Drop: 140 lbs / 30 inches</td>
</tr>
<tr>
<td>33.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTES

1. Refer to KEY for explanation of symbols, codes, abbreviations and definitions.
2. Groundwater level, if indicated above, is for the date specified and may vary.
3. Group symbol is based on visual-manual identification and selected lab testing.
4. The hole location and elevation should be considered approximate.
SOIL DESCRIPTION

Soft to medium stiff, gray, Silt to Silt with Sand (ML); moist; Interbedded with few 2-in.-thick layers of Lean Clay (CL); fine sand; low to medium plasticity; approx. 5-10% wood fragments; micaceous.

FINE-GRAINED ALLUVIUM

Solid wood, strong odor.

Loose, dark gray, Silty Sand with Gravel (SM); fine to coarse, subrounded gravel; fine to coarse sand; low plasticity fines.

SAND AND GRAVEL ALLUVIUM

Stiff to very stiff, yellow-brown, red, and light gray, Elastic Silt with Sand (MH); moist; trace fine, rounded to angular gravel; fine to coarse sand; high plasticity; blocky.

WEATHERED MUDSTONE

Hard, yellow-brown, red, and light gray, Elastic Silt with Sand (MH) to Fat Clay with Sand (CH); moist; trace fine, rounded to angular gravel; fine to coarse sand; high plasticity; blocky.

Abandoned due to practical refusal - March 24, 2014

NOTES

1. Refer to KEY for explanation of symbols, codes, abbreviations and definitions.
2. Groundwater level, if indicated above, is for the date specified and may vary.
3. Group symbol is based on visual-manual identification and selected lab testing.
4. The hole location and elevation should be considered approximate.
APPENDIX B
LABORATORY TEST RESULTS
TABLE OF CONTENTS

B.1 GENERAL ...B-1

B.2 SOIL TESTING ...B-1
 B.2.1 Moisture (Natural Water) Content ...B-1
 B.2.2 Atterberg Limits ..B-2
 B.2.3 Particle-Size Analyses ...B-2

FIGURES

B1 Atterberg Limits Results
B2 Grain Size Distribution

ATTACHMENTS

APPENDIX B

LABORATORY TEST RESULTS

B.1 GENERAL

The soil samples obtained during the field explorations were described and identified in the field in general accordance with the Standard Practice for Description and Identification of Soils (Visual-Manual Procedure), ASTM D2488. The specific terminology used is presented in Appendix A, Figure A1. The samples were then reviewed in the laboratory. The physical characteristics of the samples were noted, and the field descriptions and identifications were modified where necessary in accordance with terminology presented in Appendix A, Figure A1. Representative samples were selected for various laboratory tests. We refined our visual-manual soil descriptions and identifications based on the results of the laboratory tests, using elements of the Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System), ASTM D2487. The refined descriptions and identifications were then incorporated into the Logs of Borings, presented in Appendix A. Note that ASTM D2487 was not followed in full because it requires that a suite of tests be performed to fully classify a single sample.

The soil testing program included moisture content analyses, Atterberg limits tests, and particle-size analyses. All laboratory testing was performed by Northwest Testing, Inc., (NTI) of Wilsonville, Oregon, in accordance with applicable ASTM International (ASTM) standards. Testing procedures are summarized in the following paragraphs.

B.2 SOIL TESTING

B.2.1 Moisture (Natural Water) Content

Natural moisture content determinations were performed in accordance with ASTM D2216 on selected soil samples. The natural moisture content is a measure of the amount of moisture in the soil at the time the explorations are performed and is defined as the ratio of the weight of water to the dry weight of the soil, expressed as a percentage. The results of the moisture content determinations are presented in a report, prepared by NTI, which is included at the end of this appendix. The moisture content results are also shown graphically on the Logs of Borings in Appendix A.
B.2.2 Atterberg Limits

Atterberg limits were determined on selected samples in accordance with ASTM D4318. This analysis yields index parameters of the soil that are useful in soil identification, as well as in a number of analyses, including liquefaction analysis. An Atterberg limits test determines a soil’s liquid limit (LL) and plastic limit (PL). These are the maximum and minimum moisture contents at which the soil exhibits plastic behavior. A soil’s plasticity index (PI) can be determined by subtracting PL from LL. The results of the Atterberg limits tests are presented in a report, prepared by NTI, which is included at the end of this appendix. The LL, PL, and PI of tested samples are also presented on the Atterberg Limits Results, Figure B1. The results are shown graphically on the Logs of Borings in Appendix A. For the purposes of soil description, we use the term nonplastic to refer to soils with a PI range of 0 to 4, low plasticity for soils with a PI range of >4 to 10, medium plasticity for soils with a PI range of >10 to 20, high plasticity for soils with a PI range of >20 to 40, and very high plasticity for soils with a PI greater than 40.

B.2.3 Particle-Size Analyses

A wet sieve analysis was performed on select samples in accordance with ASTM D1140, to determine a percentage (by weight) of each sample passing the No. 200 (0.075 mm) sieve. The results of the particle-size analyses are presented in a report, prepared by NTI, which is included at the end of this appendix. Results of the particle-size analyses are also presented on Figure B2, Grain Size Distribution. For all particle-size analyses, the percentage of material passing the No. 200 sieve is shown graphically on the Logs of Borings in Appendix A.
Atterberg Limits Results

Notes
1. Atterberg limits tests were performed in general accordance with ASTM D4318 unless otherwise noted in the report.
2. Group Name and Group Symbol are in accordance with ASTM D2488 and are refined in accordance with ASTM D2487 where appropriate laboratory tests are performed.
3. Plasticity adjectives used in sample descriptions correspond to plasticity index as follows:
 - Nonplastic (NP) (< 4%)
 - Low Plasticity (4 to 10%)
 - Medium Plasticity (10 to 20%)
 - High Plasticity (> 20%)

Boring and Sample Information

<table>
<thead>
<tr>
<th>Boring and Sample No.</th>
<th>Depth (feet)</th>
<th>Group Symbol</th>
<th>Group Name</th>
<th>Liquid Limit (LL) %</th>
<th>Plasticity Index (PI) %</th>
<th>Natural W.C. %</th>
<th>Fines %</th>
</tr>
</thead>
<tbody>
<tr>
<td>B-1, S-6</td>
<td>12.0</td>
<td>ML</td>
<td>Silt with Sand to Sandy Silt</td>
<td>NP</td>
<td>NP</td>
<td>NP</td>
<td></td>
</tr>
<tr>
<td>B-2, S-4a</td>
<td>8.0</td>
<td>ML</td>
<td>Silt to Silt with Sand</td>
<td>36</td>
<td>31</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>▲ B-2, S-8</td>
<td>16.0</td>
<td>MH</td>
<td>Elastic Silt with Sand</td>
<td>70</td>
<td>41</td>
<td>29</td>
<td></td>
</tr>
</tbody>
</table>

Iron Mountain Sanitary Sewer and Pedestrian Bridge
Lake Oswego, Oregon

Atterberg Limits Results
March 2015

SHANNON & WILSON, INC.
Geotechnical and Environmental Consultants

FIG. B1
TECHNICAL REPORT

Report To: Ms. Aimee Holmes, P.E., C.E.G.
Shannon & Wilson, Inc.
3990 S.W. Collins Way, Suite 203
Lake Oswego, Oregon 97035

Date: 4/2/14

Lab No.: 14-102

Project: Laboratory Testing – Iron Mountain Sanitary Sewer & Pedestrian Bridge

Project No.: 1984.1.1

Report of: Moisture content, Atterberg limits, and amount of material passing the number 200 sieve

Sample Identification

NTI completed moisture content, Atterberg limits, and amount of material passing the number 200 sieve testing on samples of soil delivered to our laboratory on March 27, 2014. Testing was performed in accordance with the standards indicated. Our laboratory test results are summarized on the following tables.

Laboratory Testing

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>Moisture Content (Percent)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B-1 S-2 @ 4 – 5.5 ft.</td>
<td>32.9</td>
</tr>
<tr>
<td>B-1 S-7 @ 16 – 17.5 ft.</td>
<td>27.0</td>
</tr>
<tr>
<td>B-1 S-9 @ 24 – 25.5 ft.</td>
<td>48.1</td>
</tr>
<tr>
<td>B-2 S-1 @ 2.5 – 4 ft.</td>
<td>28.8</td>
</tr>
<tr>
<td>B-2 S-10 @ 22 – 23.5 ft.</td>
<td>41.6</td>
</tr>
</tbody>
</table>

Atterberg Limits (ASTM D 4318)

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>Liquid Limit</th>
<th>Plastic Limit</th>
<th>Plasticity Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>B-1 S-6 @ 12 – 13.5 ft.</td>
<td>NP</td>
<td>NP</td>
<td>NP</td>
</tr>
<tr>
<td>B-2 S-4 @ 8.0 – 9.5 ft.</td>
<td>36</td>
<td>31</td>
<td>5</td>
</tr>
<tr>
<td>B-2 S-8 @ 16 – 17.5 ft.</td>
<td>70</td>
<td>41</td>
<td>29</td>
</tr>
</tbody>
</table>

Amount of Material Finer than the No. 200 Sieve (ASTM D1140)

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>Moisture Content (%)</th>
<th>Percent Passing the No. 200 Sieve</th>
</tr>
</thead>
<tbody>
<tr>
<td>B-1 S-4 @ 8 – 9.5 ft.</td>
<td>39.6</td>
<td>22.0</td>
</tr>
<tr>
<td>B-2 S-7a @ 14 – 15.1 ft.</td>
<td>29.6</td>
<td>13.8</td>
</tr>
</tbody>
</table>

Copies: Addressee
Elliott Mecham, P.E., Shannon & Wilson, Inc.
APPENDIX C

PREVIOUS FIELD EXPLORATIONS
APPENDIX

PREVIOUS FIELD EXPLORATIONS

Shannon & Wilson, Inc., previously explored subsurface conditions at the project site with six geotechnical hand auger explorations. The hand auger explorations were advanced in October 2012 and were originally included in our preliminary letter dated November 2, 2012. The explorations were designated HA-1 through HA-6 and were advanced to depths of 4.2 to 18.6 feet below the ground surface. The locations of the completed borings were measured in the field relative to the existing bridge. Approximate locations are shown on the Site and Exploration Plan, Figure 2.
Shannon & Wilson, Inc. (S&W), uses a soil description system modified from the Unified Soil Classification System (USCS). Elements of the USCS and other definitions are provided on this and the following page. Soil identifications are based on visual-manual procedures (ASTM D2488) unless otherwise noted.

S&W OREGON SOIL CONSTITUENT DEFINITIONS

<table>
<thead>
<tr>
<th>CONSTITUENTS</th>
<th>FINE-GRAINED SOILS (50% or more fines)</th>
<th>COARSE-GRAINED SOILS (less than 50% fines)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Major</td>
<td>CLAY or SILT based on behavior</td>
<td>SAND or GRAVEL based on weight</td>
</tr>
<tr>
<td>Modifying (Secondary)</td>
<td>if fine-grained,</td>
<td>if fine-grained,</td>
</tr>
<tr>
<td></td>
<td>> 27% sandy or gravel</td>
<td>> 12% sandy or gravel</td>
</tr>
<tr>
<td>Minor</td>
<td>> 12% - 27% with sand or with gravel</td>
<td>if fine-grained,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>> 5% - 12% with silt or with clay</td>
</tr>
</tbody>
</table>

1. All percentages are by weight
2. The order of terms is: modifying MAJOR with minor

CEMENTATION DEFINITIONS

- **Weak**: Crumbles or breaks with handling or slight finger pressure
- **Moderate**: Crumbles or breaks with considerable finger pressure
- **Strong**: Will not crumble or break with finger pressure

ABBREVIATIONS

- ATD: At Time of Drilling
- Elev.: Elevation
- ft: feet
- FeO: Iron Oxide
- MgO: Magnesium Oxide
- HSA: Hollow Stem Auger
- I.D.: Inside Diameter
- in: inches
- lbs: pounds
- N: Blows for second two 6-inch increments
- N_e: N, corrected for hammer energy
- NA: Not applicable or not available
- NP: Nonplastic
- O.D.: Outside diameter
- PID: Photo-ionization detector
- ppm: parts per million
- PVC: Polyvinyl Chloride
- SPT: Standard Penetration Test
- USCS: Unified Soil Classification System
- q_u: Unconfined Compressive Strength

PARTICLE SIZE DEFINITIONS

<table>
<thead>
<tr>
<th>DESCRIPTION</th>
<th>SIEVE NUMBER AND/OR SIZE</th>
</tr>
</thead>
<tbody>
<tr>
<td>FINES</td>
<td>< #200 (0.08 mm)</td>
</tr>
<tr>
<td>SAND</td>
<td>- Fine #200 to #40 (0.08 to 0.4 mm)</td>
</tr>
<tr>
<td></td>
<td>- Medium #40 to #10 (0.4 to 2 mm)</td>
</tr>
<tr>
<td></td>
<td>- Coarse #10 to #4 (2 to 5 mm)</td>
</tr>
<tr>
<td>GRAVEL</td>
<td>- Fine #4 to 3/4 inch (5 to 19 mm)</td>
</tr>
<tr>
<td></td>
<td>- Coarse 3/4 to 3 inches (19 to 76 mm)</td>
</tr>
<tr>
<td>COBBLES</td>
<td>3 to 12 inches (76 to 305 mm)</td>
</tr>
<tr>
<td>BOULDERS</td>
<td>> 12 inches (305 mm)</td>
</tr>
</tbody>
</table>

RELATIVE DENSITY / CONSISTENCY

<table>
<thead>
<tr>
<th>RELATIVE DENSITY / CONSISTENCY</th>
<th>RELATIVE DENSITY</th>
<th>CONSISTENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>COHESIONLESS SOILS</td>
<td>N_e, SPT.</td>
<td>RELATIVE DENSITY</td>
</tr>
<tr>
<td></td>
<td>BLOWS/FT.</td>
<td>CONSISTENCY</td>
</tr>
<tr>
<td>0 - 4</td>
<td>Very loose</td>
<td>Under 2</td>
</tr>
<tr>
<td>4 - 10</td>
<td>Loose</td>
<td>2 - 4</td>
</tr>
<tr>
<td>10 - 30</td>
<td>Medium dense</td>
<td>4 - 8</td>
</tr>
<tr>
<td>30 - 50</td>
<td>Dense</td>
<td>8 - 15</td>
</tr>
<tr>
<td>Over 50</td>
<td>Very dense</td>
<td>15 - 30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Over 30</td>
</tr>
</tbody>
</table>

WELL AND OTHER SYMBOLS

- Bentonite Cement Grout
- Bentonite Grout
- Bentonite Chips
- Silica Sand
- PVC Screen
- Pressure Transducer
- Surface Cement Seal
- Asphalt or Cap
- Slough
- Bedrock
- Fill

PLASTICITY

<table>
<thead>
<tr>
<th>PLASTICITY ADJECTIVE</th>
<th>PLASTICITY INDEX (PI) RANGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nonplastic</td>
<td>0 - 4</td>
</tr>
<tr>
<td>Low Plasticity</td>
<td>>4 - 10</td>
</tr>
<tr>
<td>Medium Plasticity</td>
<td>>10 - 20</td>
</tr>
<tr>
<td>High Plasticity</td>
<td>>20 - 40</td>
</tr>
<tr>
<td>Very High Plasticity</td>
<td>>40</td>
</tr>
</tbody>
</table>

SOIL DESCRIPTION AND LOG KEY

Iron Mountain Sanitary Sewer and Pedestrian Bridge
Lake Oswego, Oregon

SHANNON & WILSON, INC.
Geotechnical and Environmental Consultants

FIG. C1
Sheet 1 of 2

October 2012 24-1-03734-001
UNIFIED SOIL CLASSIFICATION SYSTEM (USCS)
(Modified from US Army Corps of Engineers Tech Memo 3-357)

<table>
<thead>
<tr>
<th>MAJOR DIVISIONS</th>
<th>GROUP/GRAPHIC SYMBOL</th>
<th>TYPICAL DESCRIPTION</th>
</tr>
</thead>
</table>
| **COARSE-GRAINED SOIL**
 (more than 50% retained on No. 200 sieve) | Gravel or Gravel with silt or clay | GRAVEL, GRAVEL with sand, sandy GRAVEL, GRAVEL with silt or clay |
| | Silty Gravel or Clayey Gravel | Silty GRAVEL, silty GRAVEL with sand, sandy silty GRAVEL, clayey GRAVEL |
| | Sand or Sand with silt or clay | SAND, SAND with gravel, gravelly SAND, SAND with silt or clay |
| | Silty Sand or Clayey Sand | Clayey SAND, clayey SAND with gravel, gravelly clayey SAND |
| **FINE-GRAINED SOIL**
 (50% or more passes the No. 4 sieve) | Inorganic | Nonplastic to very high plasticity SILT or clayey SILT, with sand and/or gravel to sandy or gravelly |
| | Organic | Nonplastic to very high plasticity SILT or clayey SILT, with sand and/or gravel to sandy or gravelly |
| | Silt and Clay (liquid limit 50 or more) | Nonplastic to very high plasticity SILT or clayey SILT, with sand and/or gravel to sandy or gravelly |
| **HIGHLY-ORGANIC SOIL** | Primarily organic matter, dark in color, has organic odor | Peat and other highly organic soils (see ASTM D4427) |

Additional Symbols

- This symbol is used to indicate the presence of cobbles and/or boulders.
- Gray shading, when combined with another symbol, indicates cementation.

NOTES

1. Solid lines on the logs are used to group materials with similar characteristics. The groupings shown are an interpretation of the conditions encountered and actual transitions may be more gradational than shown.
2. Dual symbols (symbols separated by a hyphen, i.e., SP-SM, SAND with silt) are used for coarse-grained soils with 10 percent fines or when the liquid limit and plasticity index values plot in the CL-ML area of the plasticity chart.
3. Borderline symbols (symbols separated by a slash, i.e., CL/ML and GW/SW) indicate that the soil may fall into one of two possible basic groups.
4. The soil graphics above represent the various USCS identifications (i.e., GP, SM, etc.) and may be augmented with additional symbology to represent differences within USCS designations. Sandy SILT (ML), for example, may be accompanied by the ML soil graphic with sand grains added.

Iron Mountain Sanitary Sewer and Pedestrian Bridge
Lake Oswego, Oregon

SOIL DESCRIPTION AND LOG KEY

October 2012 24-1-03734-001

SHANNON & WILSON, INC.
Geotechnical and Environmental Consultants FIG. C1
Sheet 2 of 2
During Drilling

Red-brown SILT with sand to sandy SILT, trace gravel; moist; nonplastic to low plasticity; fine to medium sand; rounded gravel; micaceous; slight to moderate iron-oxide staining; occasional roots. (ML)

ALLUVIUM

Gray sandy SILT; moist; nonplastic to low plasticity; fine to medium sand; micaceous; occasional to scattered organics. (SM)

Gray silty SAND; moist; nonplastic fines; fine to coarse sand; micaceous. (SM)

Grades to wet below 6.2 feet.

Completed due to refusal on hard layer - September 13, 2012

Groundwater Level

Sample Not Recovered

Jar Sample

LEGEND

Notations:
1. Refer to KEY for explanation of symbols, codes, abbreviations and definitions.
2. Groundwater level, if indicated above, is for the date specified and may vary.
3. Group symbol is based on visual-manual identification and selected lab testing.
4. The hole location and elevation should be considered approximate.
During Drilling

Brown with red-brown mottling SILT with sand to sandy SILT; moist; nonplastic; fine to medium sand; micaceous; occasional roots. (ML)

ALLUVIUM

Gray sandy SILT; moist; nonplastic; fine to medium sand; micaceous. (ML)

Gray silty SAND; wet; nonplastic fines; fine to medium sand; micaceous. (SM)

Completed due to refusal on hard layer - September 13, 2012

<table>
<thead>
<tr>
<th>Total Depth:</th>
<th>8.7 ft.</th>
<th>Northing:</th>
<th>4,987.0 ft.</th>
<th>Drilling Method:</th>
<th>Hand Boring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Top Elevation:</td>
<td>105.0 ft.</td>
<td>Easting:</td>
<td>5,071.3 ft.</td>
<td>Drilling Company:</td>
<td>Shannon & Wilson, Inc.</td>
</tr>
<tr>
<td>Vert. Datum:</td>
<td>project specific</td>
<td>Station:</td>
<td>n/a</td>
<td>Drill Rig Equipment:</td>
<td>Hand Auger</td>
</tr>
<tr>
<td>Horiz. Datum:</td>
<td>project specific</td>
<td>Offset:</td>
<td>n/a</td>
<td>Other Comments:</td>
<td></td>
</tr>
</tbody>
</table>

SOIL DESCRIPTION

Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines indicated below represent the approximate boundaries between soil types, and the transitions may be gradual.

<table>
<thead>
<tr>
<th>Elev. Depth (ft.)</th>
<th>Symbol</th>
<th>Samples</th>
<th>Ground Water Depth, ft.</th>
</tr>
</thead>
<tbody>
<tr>
<td>102.4</td>
<td>S-1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>98.3</td>
<td>S-2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>96.3</td>
<td>S-3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

HAMMER WT. & DROP: 140 lbs / 30 inches

PENETRATION RESISTANCE, N (blows/ft.)

- 0
- 20
- 40
- 60
- 80
- 100

LEGEND

- * Sample Not Recovered
- Groundwater Level

NOTES

1. Refer to KEY for explanation of symbols, codes, abbreviations and definitions.
2. Groundwater level, if indicated above, is for the date specified and may vary.
3. Group symbol is based on visual-manual identification and selected lab testing.
4. The hole location and elevation should be considered approximate.

Iron Mountain Sanitary Sewer and Pedestrian Bridge
Lake Oswego, Oregon

LOG OF BORING HA-2

October 2012

SHANNON & WILSON, INC.
Geotechnical and Environmental Consultants

FIG. C3
SOIL DESCRIPTION

Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines indicated below represent the approximate boundaries between soil types, and the transitions may be gradual.

<table>
<thead>
<tr>
<th>Soil Type</th>
<th>Description</th>
<th>Sampled</th>
<th>Drilling Method</th>
<th>Drilling Company</th>
<th>Drill Rig Equipment</th>
<th>Other Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brown SILT</td>
<td>with sand to sandy SILT; moist; nonplastic to low plasticity; fine to medium sand; micaceous; slight iron-oxide staining; occasional rootlets. (ML)</td>
<td>S-1</td>
<td>Hand Boring</td>
<td>Shannon & Wilson, Inc.</td>
<td>Hand Auger</td>
<td></td>
</tr>
<tr>
<td>ALLUVIUM</td>
<td>Dark brown SILT with trace sand; wet; nonplastic to low plasticity; fine sand; micaceous; scattered to numerous organic debris. (ML)</td>
<td>S-2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gray silty SAND</td>
<td>with to medium sand; micaceous; occasional to scattered organics. (SM)</td>
<td>S-3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Completed due to refusal on hard layer - September 13, 2012 Thin weathered zone ~1/2 - 1 inches then refusal on big and smooth surface.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTES

1. Refer to KEY for explanation of symbols, codes, abbreviations and definitions.
2. Groundwater level, if indicated above, is for the date specified and may vary.
3. Group symbol is based on visual-manual identification and selected lab testing.
4. The hole location and elevation should be considered approximate.
SOIL DESCRIPTION

Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines indicated below represent the approximate boundaries between soil types, and the transitions may be gradual.

Brown with red-brown mottling SILT with sand to sandy SILT; moist; nonplastic to low plasticity; fine to medium sand; micaceous; occasional organics and rootlets. (ML)

ALLUVIUM

Gray sandy SILT: moist; nonplastic to low plasticity; fine to medium sand; micaceous; occasional to scattered organics and organic debris. (ML)

Wood fragment encountered.

Gray sandy SILT; moist; nonplastic to low plasticity; fine to medium sand; micaceous. (ML)

Completed due to refusal on cobbles - September 13, 2012

Iron Mountain Sanitary Sewer and Pedestrian Bridge
Lake Oswego, Oregon

LOG OF BORING HA-4

October 2012 24-1-03734-001

SHANNON & WILSON, INC.
Geotechnical and Environmental Consultants

REV 2
SOIL DESCRIPTION

Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines indicated below represent the approximate boundaries between soil types, and the transitions may be gradual.

Brown with red-brown mottling
- **SILT with sand to sandy SILT; moist; nonplastic to low plasticity; fine to medium sand; micaceous. (ML)**

ALLUVIUM
- **Gray SILT with sand to sandy SILT; moist; nonplastic; fine to medium sand; micaceous. (ML)**
- Scattered to numerous organics and wood debris from 4.5 to 5.0 feet.
- **Gray silty SAND; moist; nonplastic fines; fine to medium sand; micaceous; occasional to scattered organics. (SM)**
- Numerous wood debris from 11.5 to 13.0 feet.
- Grades to wet below 13.0 feet.
- Scattered wood debris from 13.0 to 15.0 feet.
- **Silty SAND; wet; nonplastic fines; fine to medium sand; scattered organics and wood debris. (SM)**
- Blue-gray, red, and brown sandy SILT; moist; low plasticity; fine to coarse sand; possible decomposed basalt or hard sedimentary unit. (ML)
- Completed due to refusal on hard layer - September 13, 2012

PENETRATION RESISTANCE, N (blows/ft.)

- ▲ Hammer Wt. & Drop: 140 lbs / 30 inches

LOG OF BORING HA-5

- **Iron Mountain Sanitary Sewer and Pedestrian Bridge**
- **Lake Oswego, Oregon**

NOTES:
1. Refer to KEY for explanation of symbols, codes, abbreviations and definitions.
2. Groundwater level, if indicated above, is for the date specified and may vary.
3. Group symbol, if indicated above, is for the date specified and may vary.
4. The hole location and elevation should be considered approximate.
SOIL DESCRIPTION

Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines indicated below represent the approximate boundaries between soil types, and the transitions may be gradual.

<table>
<thead>
<tr>
<th>Soil Type</th>
<th>Depth (ft.)</th>
<th>Hammer Wt. & Drop</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brown SILT with sand to sandy SILT; moist; nonplastic to low plasticity; fine to medium sand; micaceous; occasional rootlets. (ML)</td>
<td>99.0 2.0</td>
<td>140 lbs / 30 inches</td>
</tr>
<tr>
<td>ALLUVIUM</td>
<td>96.8 4.2</td>
<td></td>
</tr>
<tr>
<td>Gray silty SAND; wet; nonplastic fines; fine to medium sand; micaceous; occasional organics. (SM)</td>
<td>96.4 4.6</td>
<td></td>
</tr>
<tr>
<td>Gray sandy GRAVEL with silt; wet; nonplastic fines; fine to coarse sand; subrounded to subangular gravel. (GP-GM)</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

NOTES

1. Refer to KEY for explanation of symbols, codes, abbreviations and definitions.
2. Groundwater level, if indicated above, is for the date specified and may vary.
3. Group symbol is based on visual-manual identification and selected lab testing.
4. The hole location and elevation should be considered approximate.
APPENDIX D

IMPORTANT INFORMATION ABOUT YOUR GEOTECHNICAL/ENVIRONMENTAL REPORT
IMPORTANT INFORMATION ABOUT YOUR GEOTECHNICAL/ENVIRONMENTAL REPORT

CONSULTING SERVICES ARE PERFORMED FOR SPECIFIC PURPOSES AND FOR SPECIFIC CLIENTS.

Consultants prepare reports to meet the specific needs of specific individuals. A report prepared for a civil engineer may not be adequate for a construction contractor or even another civil engineer. Unless indicated otherwise, your consultant prepared your report expressly for you and expressly for the purposes you indicated. No one other than you should apply this report for its intended purpose without first conferring with the consultant. No party should apply this report for any purpose other than that originally contemplated without first conferring with the consultant.

THE CONSULTANT’S REPORT IS BASED ON PROJECT-SPECIFIC FACTORS.

A geotechnical/environmental report is based on a subsurface exploration plan designed to consider a unique set of project-specific factors. Depending on the project, these may include: the general nature of the structure and property involved; its size and configuration; its historical use and practice; the location of the structure on the site and its orientation; other improvements such as access roads, parking lots, and underground utilities; and the additional risk created by scope-of-service limitations imposed by the client. To help avoid costly problems, ask the consultant to evaluate how any factors that change subsequent to the date of the report may affect the recommendations. Unless your consultant indicates otherwise, your report should not be used: (1) when the nature of the proposed project is changed (for example, if an office building will be erected instead of a parking garage, or if a refrigerated warehouse will be built instead of an unrefrigerated one, or chemicals are discovered on or near the site); (2) when the size, elevation, or configuration of the proposed project is altered; (3) when the location or orientation of the proposed project is modified; (4) when there is a change of ownership; or (5) for application to an adjacent site. Consultants cannot accept responsibility for problems that may occur if they are not consulted after factors which were considered in the development of the report have changed.

SUBSURFACE CONDITIONS CAN CHANGE.

Subsurface conditions may be affected as a result of natural processes or human activity. Because a geotechnical/environmental report is based on conditions that existed at the time of subsurface exploration, construction decisions should not be based on a report whose adequacy may have been affected by time. Ask the consultant to advise if additional tests are desirable before construction starts; for example, groundwater conditions commonly vary seasonally.

Construction operations at or adjacent to the site and natural events such as floods, earthquakes, or groundwater fluctuations may also affect subsurface conditions and, thus, the continuing adequacy of a geotechnical/environmental report. The consultant should be kept apprised of any such events, and should be consulted to determine if additional tests are necessary.

MOST RECOMMENDATIONS ARE PROFESSIONAL JUDGMENTS.

Site exploration and testing identifies actual surface and subsurface conditions only at those points where samples are taken. The data were extrapolated by your consultant, who then applied judgment to render an opinion about overall subsurface conditions. The actual interface between materials may be far more gradual or abrupt than your report indicates. Actual conditions in areas not sampled may differ from those predicted in your report. While nothing can be done to prevent such situations, you and your consultant can work together to help reduce their impacts. Retaining your consultant to observe subsurface construction operations can be particularly beneficial in this respect.
A REPORT'S CONCLUSIONS ARE PRELIMINARY.

The conclusions contained in your consultant's report are preliminary because they must be based on the assumption that conditions revealed through selective exploratory sampling are indicative of actual conditions throughout a site. Actual subsurface conditions can be discerned only during earthwork; therefore, you should retain your consultant to observe actual conditions and to provide conclusions. Only the consultant who prepared the report is fully familiar with the background information needed to determine whether or not the report's recommendations based on those conclusions are valid and whether or not the contractor is abiding by applicable recommendations. The consultant who developed your report cannot assume responsibility or liability for the adequacy of the report's recommendations if another party is retained to observe construction.

THE CONSULTANT'S REPORT IS SUBJECT TO MISINTERPRETATION.

Costly problems can occur when other design professionals develop their plans based on misinterpretation of a geotechnical/environmental report. To help avoid these problems, the consultant should be retained to work with other project design professionals to explain relevant geotechnical, geological, hydrogeological, and environmental findings, and to review the adequacy of their plans and specifications relative to these issues.

BORING LOGS AND/OR MONITORING WELL DATA SHOULD NOT BE SEPARATED FROM THE REPORT.

Final boring logs developed by the consultant are based upon interpretation of field logs (assembled by site personnel), field test results, and laboratory and/or office evaluation of field samples and data. Only final boring logs and data are customarily included in geotechnical/environmental reports. These final logs should not, under any circumstances, be redrawn for inclusion in architectural or other design drawings, because drafters may commit errors or omissions in the transfer process.

To reduce the likelihood of boring log or monitoring well misinterpretation, contractors should be given ready access to the complete geotechnical engineering/environmental report prepared or authorized for their use. If access is provided only to the report prepared for you, you should advise contractors of the report's limitations, assuming that a contractor was not one of the specific persons for whom the report was prepared, and that developing construction cost estimates was not one of the specific purposes for which it was prepared. While a contractor may gain important knowledge from a report prepared for another party, the contractor should discuss the report with your consultant and perform the additional or alternative work believed necessary to obtain the data specifically appropriate for construction cost estimating purposes. Some clients hold the mistaken impression that simply disclaiming responsibility for the accuracy of subsurface information always insulates them from attendant liability. Providing the best available information to contractors helps prevent costly construction problems and the adversarial attitudes that aggravate them to a disproportionate scale.

READ RESPONSIBILITY CLAUSES CLOSELY.

Because geotechnical/environmental engineering is based extensively on judgment and opinion, it is far less exact than other design disciplines. This situation has resulted in wholly unwarranted claims being lodged against consultants. To help prevent this problem, consultants have developed a number of clauses for use in their contracts, reports and other documents. These responsibility clauses are not exculpatory clauses designed to transfer the consultant's liabilities to other parties; rather, they are definitive clauses that identify where the consultant's responsibilities begin and end. Their use helps all parties involved recognize their individual responsibilities and take appropriate action. Some of these definitive clauses are likely to appear in your report, and you are encouraged to read them closely. Your consultant will be pleased to give full and frank answers to your questions.

The preceding paragraphs are based on information provided by the ASFE/Association of Engineering Firms Practicing in the Geosciences, Silver Spring, Maryland